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INSTRUCTIONS TO CANDIDATES
These instructions are the same on the Printed Answer Book and the Question Paper.
• The Question Paper will be found in the centre of the Printed Answer Book.
• Write your name, centre number and candidate number in the spaces provided on the 

Printed Answer Book. Please write clearly and in capital letters.
• Write your answer to each question in the space provided in the Printed Answer 

Book. Additional paper may be used if necessary but you must clearly show your 
candidate number, centre number and question number(s).

• Use black ink. HB pencil may be used for graphs and diagrams only.
• Read each question carefully. Make sure you know what you have to do before starting 

your answer.
• Answer any three questions.
• Do not write in the bar codes.
• You are permitted to use a scientific or graphical calculator in this paper.
• Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES
This information is the same on the Printed Answer Book and the Question Paper.
• The number of marks is given in brackets [ ] at the end of each question or part question 

on the Question Paper.
• You are advised that an answer may receive no marks unless you show sufficient detail 

of the working to indicate that a correct method is being used.
• The total number of marks for this paper is 72.
• The Printed Answer Book consists of 20 pages. The Question Paper consists of 8 pages. 

Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER / INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or 
recycled. Please contact OCR Copyright should you wish to re-use this document.
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Candidates answer on the Printed Answer Book.
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• Printed Answer Book 4757
• MEI Examination Formulae and Tables (MF2)
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• Scientific or graphical calculator
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Option 1:  Vectors

1 A mine contains several underground tunnels beneath a hillside. The hillside is a plane, all the tunnels are 
straight and the width of the tunnels may be neglected. A coordinate system is chosen with the z-axis pointing 
vertically upwards and the units are metres. Three points on the hillside have coordinates A(15, −60, 20), 
B(−75, 100, 40) and C(18, 138, 35.6).

 (i) Find the vector product 
→
AB ×

→
AC and hence show that the equation of the hillside is 2x − 2y + 25z = 650.

 [5]

 The tunnel TA begins at A and goes in the direction of the vector 15i + 14j − 2k; the tunnel TC begins at C 
 and goes in the direction of the vector 8i + 7j − 2k. Both these tunnels extend a long way into the ground.

 (ii) Find the least possible length of a tunnel which connects B to a point in TA. [6]

 (iii) Find the least possible length of a tunnel which connects a point in TA to a point in TC. [6]

 (iv) A tunnel starts at B, passes through the point (18, 138, p) vertically below C, and intersects TA at the 
point Q. Find the value of p and the coordinates of Q. [7]

Option 2:  Multi-variable calculus

2 You are given that g(x, y, z) = x2 + 2y2 − z2 + 2xz + 2yz + 4z − 3.

 (i) Find 
∂g
∂x , 

∂g
∂y  and 

∂g
∂z . [3]

 The surface S has equation g(x, y, z) = 0, and P(–2, −1, 1) is a point on S.

 (ii) Find an equation for the normal line to the surface S at the point P. [3]

 (iii) A point Q lies on this normal line and is close to P. At Q, g(x, y, z) = h, where h is small. Find the 
constant c such that PQ ≈ c � h �. [5]

 (iv) Show that there is no point on S at which the normal line is parallel to the z-axis. [5]

 (v) Given that x + y + z = k is a tangent plane to the surface S, find the two possible values of k. [8]
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Option 3:  Differential geometry

3 A curve has parametric equations

x = a(1 − cos3 θ ),   y = a sin3 θ ,    for  0  θ   π3 ,

 where a is a positive constant.

 The arc length from the origin to a general point on the curve is denoted by s, and ψ is the acute angle 

 defined by tan ψ = 
dy
dx

.

 (i) Express s and ψ in terms of θ , and hence show that the intrinsic equation of the curve is

 s = 3
2  a sin2 ψ. [9]

 (ii) For the point on the curve given by θ  = π6 , find the radius of curvature and the coordinates of the centre 
of curvature. [9]

 (iii) Find the area of the curved surface generated when the curve is rotated through 2π radians about the 
y-axis. [6]
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Option 4:  Groups

4 (i) Show that the set P = {1, 5, 7, 11}, under the binary operation of multiplication modulo 12, is a group. 
You may assume associativity. [4]

 A group Q has identity element e. The result of applying the binary operation of Q to elements x and y is 
written xy, and the inverse of x is written x−1.

 (ii) Verify that the inverse of xy is y−1 x−1. [2]

 Three elements a, b and c of Q all have order 2, and ab = c.

 (iii) By considering the inverse of c, or otherwise, show that ba = c. [2]

 (iv) Show that bc = a and ac = b. Find cb and ca. [4]

 (v) Complete the composition table for R = {e, a, b, c}. Hence show that R is a subgroup of Q and that R is 
isomorphic to P. [4]

 The group T of symmetries of a square contains four reflections A, B, C, D, the identity transformation E 
and three rotations F, G, H. The binary operation is composition of transformations. The composition table 
for T is given below.

A B C D E F G H

A E G H F A D B C

B G E F H B C A D

C F H E G C A D B

D H F G E D B C A

E A B C D E F G H

F C D B A F G H E

G B A D C G H E F

H D C A B H E F G

 (vi) Find the order of each element of T. [3]

 (vii) List all the proper subgroups of T. [5]
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Option 5:  Markov chains

This question requires the use of a calculator with the ability to handle matrices.

5 In this question, give probabilities correct to 4 decimal places.

 A ‘random walk’ is modelled as a Markov chain with five states A, B, C, D, E representing the possible 
positions, from left to right, of an object. At each ‘step’ the object moves as follows.

• If the object is at A, it moves one place to the right (to B).
• If the object is at E, it moves one place to the left (to D).
• Otherwise, the probability that the object moves one place to the left is 0.4, and the probability that it 

moves one place to the right is 0.6.
 Steps occur at intervals of one minute, and the time taken to move may be neglected. The object starts at A, 

so after the first step (one minute later) the object is at B.

 (i) Which of the five states are reflecting barriers? [1]

 (ii) Write down the transition matrix P. [2]

 (iii) State the possible positions of the object after 10 steps, and give the probabilities that the object is in 
each of these positions. [4]

 (iv) Find the probability that after 15 steps the object is in the same position as it was after 13 steps. [3]

 (v) Find the number of steps after which the probability that the object is at D exceeds 0.69 for the first 
time. [3]

 (vi) Find the limits of P2n and P2n +1 as the positive integer n tends to infinity. [4]

 (vii) For the interval of 100 minutes between the 200th step and the 300th step, find the expected length of 
time for which the object is at each of the five positions. [3]

 (viii) At a certain instant, the object arrives at D. Find the expected number of successive occasions that the 
object moves to E (and then back to D). Hence find the expected time after this instant when the object 
first moves to C. [4]
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